devices - motion capture camera, force plates etc. are routed through QUARC. High performance and flexibility of QUARC's Stream API and Hardware-In-The-Loop API allow for rapid integration of all these different components. QUARC also monitors and controls all simulation systems in real time and is responsible for real-time reaction models that dictate responses of various interfaces, including the simulator, the treadmill, the visual display and the audio cueing systems. For example, to create a fall scenario on the instrumented stairs, the reaction model might specify that as soon as the participant exerts a particular force on a particular step, the simulator will be accelerated rapidly. The latency of this process, from measurement system output to simulation system input is less than 25ms.
"The power of QUARC, with Quanser's engineering support," said Dr. Geoff Fernie, Toronto Rehab's Vice President in the interview earlier this year "enabled us to create a flexible development environment for researchers to implement sophisticated real-time experiments, using a large scale 11-ton, 6-DOF motion platform and high-performance audio-visual rendering system. "
"The power of QUARC, with Quanser's engineering support," said Dr. Geoff Fernie, Toronto Rehab's Vice President in the interview earlier this year "enabled us to create a flexible development environment for researchers to implement sophisticated real-time experiments, using a large scale 11-ton, 6-DOF motion platform and high-performance audio-visual rendering system. "
To discuss your unique research lab needs, contact info@quanser.com
No comments:
Post a Comment