Thursday, December 19, 2013

SWAT Visits Quanser

Recently, I, along with a few of my SWAT 771 teammates, came to visit Quanser after Dr. Lai invited us for a tour. Being involved in the FIRST Robotics program and working as an engineer for a career are two completely different things, so to be able to learn the ins and outs of an actual engineering facility was an eye-opening and unforgettable experience.

When we got there, we went into the boardroom to listen to a presentation and learned about what Quanser really was, a global company making innovative machines to make lives easier and more efficient. We also listened to a presentation about how we can make our FRC season run much smoother by Peter Martin, the lead mentor of  Team 4001. Learning about the dynamics and work ethic of teams other than our own was great and gave us a new perspective with which to tackle this season.

Once the presentation was over, Dr Lai and Mr Martin gave us a tour of the facility, where we saw the workshops, research centre and got to look at many innovative projects. The workshop was much larger than the one we get to build our robot, and nearly everyone was speechless. The projects were something else entirely, even though many of us visiting Quanser haven’t had the opportunity to take physics yet (we were Grade 10’s mainly) the projects were still breathtaking. Being a race car driver, my personal favourite was the active suspension that was connected to a computer with a car simulation.

Seeing a day in the life of an engineer was a very great and interesting experience I’m sure SWAT will not forget. With the kick-off to our robotics season coming closer and closer, the knowledge we learned is going to make us a stronger team. Thank you to everyone for letting us into your workplace and hopefully we will keep in touch!

~ Taegen Poles,
SWAT 771
St. Mildred’s-Lightbourn School from Oakville, Ontario 

Tuesday, December 17, 2013

Controls Course Gives Students Skills and Tools for Senior Design Project and Future Career

The School of Mechanical Engineering at the Purdue University has a rather large enrollment, with more than 1,300 students in sophomore to senior years. The School strives to graduate engineers with knowledge and skills they will use in their career paths once they leave the university. Providing them with the tools and equipment similar to those used in industry is therefore a must.

A great example of a course that adapted to the changing environment is the Automatic Control Systems Course. While the controller design techniques and theories that students learn are still sound, the course lab had to be updated to reflect the shift in the controllers hardware implementation. As a result, students learn controller design methods working with Quanser-NI platform. Since the focus of the course lies on the controller design, rather than on programming or plant analysis, the School has decided to equip the lab with several NI CompactRIO controllers that can be easily connected to a Quanser plant, such as a Linear Inverted Pendulum or Seesaw.

A typical lab setup as presented by Dr. Galen King, Professor of Mechanical Engineering at Purdue University during the recent NI Engineering Education webcast series.
At the beginning of the course, students learn to design their controller based on the method covered in the class, using LabVIEW Control Design and Simulation Module. Once they validate their algorithm in simulation, they deploy the code to the cRIO system, using LabVIEW to program FPGA on the cRIO module. At the end of semester, students complete their project by implementing the controller on an actual physical plant - either a custom build one, or on a linear motion control system from Quanser. That allows them to observe the behavior of the plant and tune their controller. At the end of the semester the students can compare their designs in a contest. They even take Quanser Seesaw further, to make the contest more exciting: students have to come up with the controller to balance the seesaw as weights are added on one end.

The course has been very well received by the students. By the end of the course, they are able to design real-time controllers on their own and are quite happy with the minimal programming overhead using LabVIEW environment. Moreover, they are able to apply the control concepts during their Capstone Design Project - and several students are competing to use the cRIO controllers they became familiar with in the Automatic Control Systems Course.

That's exactly what the Quanser-NI platform is supposed to do - make controls engineering teaching more engaging, while giving students industry-related tools and build the skills they will need as professional engineers.

To learn more about Quanser-NI platform for controls, click here.

Wednesday, December 4, 2013

Quanser Qball Starring on TV

Click here to watch the CTV News video
The news of the retail giant Amazon planning to deliver orders using flying robots within the next five years spread quickly around the world. CTV News brought the story to its viewers surrounded by the Quanser "drones" - or unmanned aerial vehicles, as we prefer to call them: Qball-X4.

Visiting Concordia University in Montreal, the reporter discussed the feasibility of Amazon's plans with the experts from the  Diagnosis, Flight Control and Simulation and Networked Autonomous Vehicles Lab. Their work is focused on development of the fault-tolerant flight control systems, as well as cooperative UAV systems with increased reliability in severe environments. Quanser unmanned systems, such as Qball-X4 quadrotor and Qbot ground vehicle help the team, allowing them to develop and test their control strategies in the controlled environment of the lab.

To learn more about Quanser autonomous systems for research and teaching, visit our website.